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Abstract. The optimal value function ðc; bÞ7!uðc; bÞ of the quadratic program minf12 xTDxþ
cTx : AxPbg, where D 2 Rn�n

S is a given symmetric matrix, A 2 Rm�n a given matrix, c 2 Rn

and b 2 Rm are the linear perturbations, is considered. It is proved that u is directionally

differentiable at any point w ¼ ðc; bÞ in its effective domain W :¼ fw ¼ ðc; bÞ 2
Rn � Rm : �1 < uðc; bÞ < þ1g:Formulae for computing the directional derivativeu0ðw; zÞ of
uatw in a direction z ¼ ðu; vÞ 2 Rn � Rm are obtained.Wealso present an example showing that,

in general, u is not piecewise linear-quadratic on W. The preceding (unpublished) example of
Klatte is also discussed.
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1. Introduction

Consider the quadratic programming (QP, for brevity) problem with linear
constraints

minimize fðx; cÞ :¼ 1
2 x

T Dxþ cTx

subject to x 2 DðA; bÞ :¼ fx 2 Rn : AxPbg; ð1:1Þ

where D 2 Rn�n
S and A 2 Rm�n are given matrices, c 2 Rn and b 2 Rm are

given vectors. Here Rn�n
S denotes the set of ðn� nÞ-symmetric matrices, and

the apex T stands for the transposition. Denote by SðD;A; c; bÞ; SolðD;A;
c; bÞ, locðD;A; c; bÞ and uðD;A; c; dÞ, respectively, the set of the Karush–
Kuhn–Tucker points, the set of the (global) solutions, the set of the local
solutions, and the optimal value of (1.1). Thus, in particular, uðD;
A; c; bÞ ¼ inff fðx; cÞ : x 2 DðA; bÞg: By convention, uðD;A; c; bÞ ¼ þ1 if
DðA; bÞ ¼ ;.

Journal of Global Optimization (2005) 32: 119–134 � Springer 2005
DOI 10.1007/s10898-004-1944-z



Suppose that the matrices D and A are not subject to perturbation. We
are interested in studying the function uðD;A; �; �Þ : Rn � Rm ! �R;
ðc; bÞ7!uðD;A; c; bÞ: Here ðc; bÞ represents the pair of linear perturbations
in problem (1.1). Klatte [8] has proved that uðD;A; �; �Þ is Lipschitz on
every bounded subset of its effective domain

W :¼ fðc; bÞ 2 Rn � Rm : �1 < uðD;A; c; bÞ < þ1g: ð1:2Þ

The aim of this paper is to obtain some results related to the directional
differentiability and the piecewise linear-quadratic property of the optimal
value function uðD;A; �; �Þ. By abuse of notation, we shall write uðc; bÞ
instead of uðD;A; c; bÞ.
It will be shown that although u is not a convex function, it enjoys the

important property of convex functions of being directionally differentiable
at any point in its effective domain. Formulae for computing the direc-
tional derivative u0ð�w; zÞ of u at an arbitrary point �w ¼ ð�c; �bÞ 2W in a
direction z ¼ ðu; vÞ 2 Rn � Rm are established.
Differential property of the optimal value function in quadratic pro-

gramming has been addressed, for example, in Refs. [1, 3, 7, 13]. Continu-
ity of the optimal value function ðD;A; c; bÞ7!uðD;A; c; bÞ has been
characterized by Tam [14].
The notion of piecewise linear-quadratic function (plq function, for brev-

ity) was introduced by Rockafellar [10]. The class of plq functions has been
investigated systematically in Rockafellar and Wets [11]. In particular, the
topics like subdifferential calculation, dualization, and optimization involv-
ing plq functions, are studied in the book. It is known that if D is positive
semidefinite, i.e., xTDxP0 for all x 2 Rn, then uðc; bÞ is piecewise linear-
quadratic on W which, in this case, is a polyhedral convex cone. In the case
where D is not a positive semidefinite matrix, the closed cone W may be
nonconvex; but it can be represented as the union of finitely many polyhe-
dral convex cones ([8], Theorem 2). It is of interest to know whether uðc; bÞ
is still a plq function on W. This question was raised by one of the two anon-
ymous referees of Tam [14]. We will construct an example which shows that,
in general, u is not a plq function on W. This example exposes well the
structure of the class of optimal value functions under our consideration.
We give some auxiliary results in Section 2 and establish the directional

differentiability of the function uðc; bÞ in Section 3. We study the piecewise
linear-quadratic property of u in Section 4.

2. Auxiliary Results

Fix a pair ðD;AÞ 2 Rn�n
S � Rm�n and consider problem (1.1), where

ðc; bÞ 2 Rn � Rm is the pair of linear perturbations. Following [8], we con-
sider the auxiliary problem
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minimize 1
2ðc

Txþ bTkÞ subject to ðx; kÞ 2 PKKTðc; bÞ; ð2:1Þ

where

PKKTðc; bÞ ¼ fðx; kÞ 2 Rn � Rm : Dx� ATkþ c ¼ 0;

AxPb; kP0; kTðAx� bÞ ¼ 0g: ð2:2Þ

Elements of PKKTðc; bÞ are called the Karush–Kuhn–Tucker pairs of (1.1).
Let

uKKTðc; bÞ ¼ inf 1
2ðc

Txþ bTkÞ : ðx; kÞ 2 PKKTðc; bÞ
� �

ð2:3Þ

be the optimal value of problem (2.1). As in the preceding section, we set

uðc; bÞ ¼ inf 1
2x

T Dxþ cTx : AxPb; x 2 Rn
� �

: ð2:4Þ

Denote by Solðc; bÞ and SolKKTðc; bÞ the solution sets of (1.1) and of (2.1),
respectively.

LEMMA 2.1 (see [8], p. 820). If Solðc; bÞ is nonempty then SolKKTðc; bÞ is
nonempty, and

Solðc; bÞ ¼ pRnðSolKKTðc; bÞÞ;
uðc; bÞ ¼ uKKTðc; bÞ;

where, by definition, pRnðx; kÞ ¼ x for every ðx; kÞ 2 Rn � Rm.

Note that the set W defined by (1.2) coincides with the effective domain
of the multifunction SolðD;A; �; �Þ, that is

W ¼ fðc; bÞ 2 Rn � Rm : �1 < uðc; bÞ < þ1g
¼ fðc; bÞ 2 Rn � Rm : Solðc; bÞ 6¼ ;g: ð2:5Þ

Indeed, for any pair ðc; bÞ 2 Rn � Rm, if Solðc; bÞ 6¼ ; then �1 < uðc; bÞ <
þ1. Conversely, if �1 < uðc; bÞ < þ1 then DðA; bÞ is nonempty and the
function fð�; cÞ is bounded below on DðA; bÞ. By the Frank–Wolfe theorem
(see, for instance, [4]), (1.1) must have a solution, i.e., Solðc; bÞ 6¼ ;.
Taking account of (2.5), we can formulate the results from [8] concerning

the optimal value function uðc; bÞ as follows.

LEMMA 2.2 ([8], Theorem 2). The effective domain W of u is the union of
a finitely many polyhedral convex cones, i.e., there exists a finite number of
polyhedral convex cones Wi � Rn � Rm ði ¼ 1; 2; . . . ; sÞ such that

W ¼
[s

i¼1
Wi: ð2:6Þ
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LEMMA 2.3 ([8], Theorem 3). The function u is Lipschitz on every bounded
subset X �W, i.e., for each bounded subset X �W there exists a constant
kX > 0 such that

kuðc0; b0Þ � uðc; bÞkOkXðkc0 � ck þ kb0 � bkÞ

for any ðc; bÞ; ðc0; b0Þ 2 X.

For each subset I � f1; 2; . . . ;mg, we define

PI
KKTðc; bÞ ¼ fðx; kÞ 2 Rn � Rm : Dx� ATkþ c ¼ 0;

AixPbi; ki ¼ 0 ð8i 2 IÞ;
Ajx ¼ bj; kjP0 ð8j j2 IÞg

where Ai ði 2 f1; . . . ;mgÞ denotes the i-th row of the matrix A and bi is the
i-th component of b. It is clear that

PKKTðc; bÞ ¼
[

I�f1;...; mg
PI
KKTðc; bÞ: ð2:7Þ

Note that PI
KKTðc; bÞ is the solution set of the following system of linear

equalities and inequalities:

Dx� ATkþ c ¼ 0;

AIxPbI; kI ¼ 0

AJx ¼ bJ; kJP0; ð2:8Þ
x 2 Rn; k 2 Rm;

where J ¼ f1; 2; . . . ;mg n I and, as usual, AJ denotes the matrix composed
by the rows Aj ð j 2 JÞ of A, and kI is the vector with the components
ki ði 2 IÞ. Define

uI
KKTðc; bÞ ¼ inf 1

2ðc
Txþ bTkÞ : ðx; kÞ 2 PI

KKTðc; bÞ
� �

: ð2:9Þ

Thus uI
KKTðc; bÞ is the optimal value of the linear programming problem

whose objective function is 1
2 ðcTxþ bTkÞ and whose constraints are

described by (2.8). It turns out that, for any I � f1; 2; . . . ;mg, the effective
domain of uI

KKTð�Þ is a polyhedral convex cone (see [9], p. 11) on which the
function admits a linear-quadratic representation. Namely, using the con-
cept of pseudo-inverse matrix one can establish the following result.

LEMMA 2.4 (see [2], Theorem 5.5.2). The effective domain

dom uI
KKT ¼ fðc; bÞ 2 Rn � Rm : �1 < uI

KKTðc; bÞ < þ1g

is a polyhedral convex cone and there exist a matrix MI 2 RðnþmÞ�ðnþmÞ and
a vector qI 2 Rnþm such that

122 G.M. LEE, N.N. TAM AND N.D. YEN



uI
KKTðc; bÞ ¼ 1

2

c

b

� �T
MI

c

b

� �
þ qTI

c

b

� �

for every ðc; bÞ 2 dom uI
KKT.

The following useful fact follows from Lemma 2.1.

LEMMA 2.5. For any ðc; bÞ 2W, it holds

uðc; bÞ ¼ minfuI
KKTðc; bÞ : I � f1; 2; . . . ;mgg: ð2:10Þ

Proof. From (2.3), (2.7) and (2.9) we deduce that

uKKTðc; bÞ ¼ minfuI
KKTðc; bÞ : I � f1; 2; . . . ;mgg:

Combining this with the formula uðc; bÞ ¼ uKKTðc; bÞ we obtain (2.10). (

REMARK 2.1. From (2.10) it follows that, for any I � f1; 2; . . . ;mg and
for any ðc; bÞ 2W, uI

KKTðc; bÞ > �1.

REMARK 2.2. It may happen that for some pairs ðc; bÞ 2W the function
uI
KKT has the value þ1. Note that uI

KKTðc; bÞ ¼ þ1 if and only if the solu-
tion set of (2.8) is empty. The example considered in Section 4 will illus-
trate this situation.

REMARK 2.3. If D is a positive semidefinite matrix then (1.1) is a convex
QP problem and the equality uI1

KKTðc; bÞ ¼ uI2
KKTðc; bÞ holds for any index

sets I1; I2 � f1; 2; . . . ;mg and for any point ðc; bÞ 2 dom uI1
KKT \ dom uI2

KKT.
The last equality is valid because any KKT point of a convex QP problem
is a global solution.

3. Directional Differentiability

Recall ([9], p. 13) that a subset K � Rp is called a cone if tx 2 K whenever
x 2 K and t > 0. (The origin itself may or may not be included in K.)

PROPOSITION 3.1. Let W be defined by (1.2), L ¼ fb : DðA; bÞ 6¼ ;g;
Z1 ¼ fðc; bÞ : uðc; bÞ ¼ þ1g; Z2 ¼ fðc; bÞ : uðc; bÞ ¼ �1g:

Then Z1 is an open cone, W is a closed cone, and Z2 is a cone which is rela-
tively open in the polyhedral convex cone Rn � L � Rn � Rm. Moreover,

Rn � L ¼W [ Z2; Rn � Rm ¼W [ Z2 [ Z1;

Z1 ¼ ðRn � RmÞ n ðRn � LÞ: ð3:1Þ

The easy proof of this proposition is omitted.
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THEOREM 3.1. The optimal value function u defined in (2.4) is directionally
differentiable on W, i.e., for any �w ¼ ð�c; �bÞ 2W and for any
z ¼ ðu; vÞ 2 Rn� Rm there exists the directional derivative

u0ð�w; zÞ :¼ lim
t#0

uð�wþ tzÞ � uð�wÞ
t

ð3:2Þ

of u at �w in direction z.

Proof. Let �w ¼ ð�c; �bÞ 2W and z ¼ ðu; vÞ 2 Rn � Rm be given arbitrarily. If
z ¼ 0 then it is obvious that u0ð�w; zÞ ¼ 0. Assume that z 6¼ 0. We first
prove that one of the following three cases must occur:

(c1) there exists �t > 0 such that �wþ tz 2 Z1 for every t 2 ð0; �t �,
(c2) there exists �t > 0 such that �wþ tz 2 Z2 for every t 2 ð0; �t �,
(c3) there exists �t > 0 such that �wþ tz 2W for every t 2 ð0; �t �,

where the cones Z1 and Z2 have been defined in Proposition 3.1. For this
purpose, suppose that (c3) fails to hold. We have to show that, in this case,
(c1) or (c2) must occur. Since (c3) is not valid, we can find a decreasing
sequence tk ! 0þ such that �wþ tkz j2W for every k 2 N, where N denotes
the set of the positive integers. By (3.1), for each k 2 N, we must have
�wþ tkz 2 Z1 or �wþ tkz 2 Z2. Hence, there exists a subsequence ftkig of
ftkg such that

�wþ tkiz 2 Z1 ð8i 2 NÞ; ð3:3Þ

or

�wþ tkiz 2 Z2 ð8i 2 NÞ: ð3:4Þ

Consider the case where (3.3) is fulfilled. If there exists an t̂ 2 ð0; tk1Þ such
that �wþ t̂z 2 Rn � L then, by the convexity of the set Rn � L,

f�wþ tz : t 2 ½0; t̂ �g � Rn � L:

By virtue of the first equality in (3.1), this yields uð�wþ tzÞ 6¼ þ1 for every
t 2 ½0; t̂ �, contradicting (3.3). Thus (3.3) implies that �wþ tz j2Rn � L for
every t 2 ð0; tk1Þ. Then, the third equality in (3.1) shows that �wþ tz 2 Z1

for every t 2 ð0; tk1Þ. Putting �t ¼ tk1 we see that (c1) holds.
Consider the case where (3.4) is fulfilled. Since �w 2W � Rn � L and

�wþ tk1z 2 Z2 � Rn � L; it follows that

f�wþ tz : t 2 ½0; tk1 �g � Rn � L:

Therefore, we can deduce from the first equality in (3.1) that, for every
t 2 ð0; tk1Þ, �wþ tz 2 Z2 or �wþ tz 2W. If there exists i 2 N such that

�wþ tz 2 Z2 ð8t 2 ð0; tkiÞÞ ð3:5Þ
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then (c2) is satisfied if we choose �t ¼ tki . If there is no i 2 N such that ð3:5Þ
is valid, then for every i 2 N there must exist some t0ki 2 ð0; tkiÞ such that
�wþ t0kiz 2W. By (2.6), there is an index jðkiÞ 2 f1; . . . ; sg such that

�wþ t0kiz 2WjðkjÞ: ð3:6Þ

Without loss of generality we can assume that

0 < t0kiþ1 < tkiþ1 < t0ki < tki ð8i 2 NÞ: ð3:7Þ

Since jðkiÞ 2 f1; . . . ; sg, there must exist a pair ði; jÞ such that j > i and
jðkjÞ ¼ jðkiÞ. By (3.6) and by the convexity of WjðkiÞ, we have

f�wþ tz : t0kjOtOt0kig �WjðkiÞ �W: ð3:8Þ

From (3.4) and (3.7) we get uð�wþ tkiþ1zÞ ¼ �1 and t0kj < tkiþ1 < t0ki , a con-
tradiction to (3.8). We have thus proved that if (3.4) is valid then (c2) must
occur.
Summarizing all the above, we conclude that one of the three cases (c1)–

(c3) must occur.
If (c1) occurs then by (3.2) we have u0ð�w; zÞ ¼ þ1. Similarly, if (c2)

happens then u0ð�w; zÞ ¼ �1. Now assume that (c3) takes place. Denote by
F the collection of the index sets I � f1; 2; . . . ;mg for which there exists
tI 2 ð0; �t Þ, where �t > 0 is given by (c3), such that

f�wþ tz : t 2 ½0; tI�g � dom uI
KKT: ð3:9Þ

Observe that dom uI
KKT is a closed convex set (see Lemma 2.4). If F ¼ ;

then for any I � f1; 2; . . . ;mg and for any t 2 ð0; �t� one has uI
KKTð�wþ tzÞ ¼

þ1. By (c3), �wþ tz 2W for all t 2 ð0; �t�. Then, according to (3.1) we have

uð�wþ tzÞ ¼ minfuI
KKTð�wþ tzÞ : I � f1; 2; . . . ;mgg ¼ þ1

for all t 2 ð0; �t�, which is impossible. We have shown that F 6¼ ;. Define

t̂ ¼ minftI : I 2 Fg > 0:

By (c3) and (3.1) we have

uð�wþ tzÞ ¼ minfuI
KKTð�wþ tzÞ : I 2 Fg ð8t 2 ½0; t̂ �Þ: ð3:10Þ

It follows from (3.9) that

�wþ tz 2 dom uI
KKT ð8I 2 F; 8t 2 ½0; t̂ �Þ:

For each I 2 F, let MI 2 RðnþmÞ�ðnþmÞ and qI 2 Rnþm be such that the repre-
sentation for uI

KKTðc; bÞ in Lemma 2.4 holds for all ðc; bÞ 2 dom uI
KKT.

Setting

~uI
KKTðc; bÞ ¼ 1

2

c

b

� �T
MI

c

b

� �
þ qTI

c

b

� �
ð3:11Þ
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for every ðc; bÞ 2 Rn � Rm, we extend uI
KKTð�Þ from dom uI

KKT to the whole
space Rn � Rm. From (3.11) it follows that all the functions ~uI

KKTð�Þ; I 2 F,
are smooth. According to Clarke ([5], Theorem 2.1), the function

~uðc; bÞ ¼ minf~uI
KKTðc; bÞ : I 2 Fg

is locally Lipschitz at �w ¼ ð�c; �bÞ. Moreover, ~u is Lipschitz regular (see [6],
Definition 2.3.4) at �w, and

~u0ð�w; zÞ ¼ ~u0ð�w; zÞ ¼ minfð~uI
KKTÞ

0ð�w; zÞ : I 2 Fg; ð3:12Þ
where ~u0ð�w; zÞ (resp., ~u0ð�w; zÞ) denotes the Clarke generalized directional
derivative (resp., the directional derivative) of ~u at �w in direction z. Since
~uI
KKTðc; bÞ ¼ uI

KKTðc; bÞ for all ðc; bÞ 2 dom uI
KKT, from (3.10) and (3.12) it

follows that the directional derivative u0ð�w; zÞ exists, and we have

u0ð�w; zÞ ¼ minfðuI
KKTÞ

0ð�w; zÞ : I 2 Fg: ð3:13Þ

The proof is complete. (
In the course of the above proof we have obtained some explicit formu-

lae computing the directional derivative of the function u. Namely, we
have proved the following result.

THEOREM 3.2. Let �w 2W and z ¼ ðu; vÞ 2 Rn � Rm. The following asser-
tions hold:
(i) If there exists �t > 0 such that

�wþ tz 2 Z1 ¼ fðc; bÞ : DðA; bÞ ¼ ;g ð8t 2 ð0; �t �Þ;
then u0ð�w; zÞ ¼ þ1.

(ii) If there exists �t > 0 such that
�wþ tz 2 Z2 ¼ fðc; bÞ : DðA; bÞ 6¼ ;; uðc; bÞ ¼ �1g ð8t 2 ð0; �t �Þ;
then u0ð�w; zÞ ¼ �1.

(iii) If there exists �t > 0 such that
�wþ tz 2W ¼ fðc; bÞ : DðA; bÞ 6¼ ;; uðc; bÞ > �1g ð8t 2 ð0; �t �Þ;
then u0ð�w; zÞ can be computed by formula (3.13), where F is the col-
lection of the index sets I � f1; 2; . . . ;mg such that there exists some
tI 2 ð0; �tÞ satisfying condition (3.9).

At the end of Section 4 we shall use Theorem 3.2 for computing direc-
tional derivative of the optimal value function in a nonconvex QP prob-
lem.

4. The Piecewise Linear-quadratic Property

In this section we study the piecewise linear–quadratic property of the
function uð�Þ defined by (2.4).
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DEFINITION 4.1 (see [11], p. 440). A function w : Rl ! �R is piecewise lin-
ear–quadratic (plq) if the set

dom w ¼ fz 2 Rl : �1 < wðzÞ < þ1g ð4:1Þ

can be represented as the union of finitely many polyhedral convex sets,
relative to each of which wðzÞ is given by an expression of the form

1
2z

TQzþ dTzþ a ð4:2Þ
for some a 2 R; d 2 Rl; Q 2 Rl�l

S .
Note that in ([11], p. 440) instead of (4.1) one has the following for-

mula:

dom w ¼ fz 2 Rl : wðzÞ < þ1g: ð4:3Þ

If there exists some �z 2 Rl with wð�zÞ ¼ �1 then, since �z belongs to the set
defined in (4.3), one cannot represent the latter as the union of finitely
many polyhedral convex sets, relative to each of which wðzÞ is given by an
expression of the form (4.2). Hence w cannot be a plq function. This is the
reason why we prefer (4.1)–(4.3).
In [11] a series of results on plq functions have been established. For

example, it is proved that the conjugate of a proper, lower semicontinuous,
convex function is plq if and only if the given function is plq (Theorem
11.14). It is shown that any proper, convex, plq, bounded below function
has a global minimum (Corollary 11.16).
If D is a positive semidefinite matrix then, by using a theorem of Eaves

(see [8], p. 825), one can prove that W is a polyhedral convex cone. Using
Lemmas 2.4 and 2.5, and Remark 2.3, it is not difficult to show that the
optimal value function uðc; bÞ ¼ uðD;A; c; bÞ of a convex QP problem is plq.
This result is already known.
One anonymous referee of [14] informed that the plq property of the opti-

mal value function in convex QP problems was established by Sun [12]. Being
not able to consult the thesis of Sun, we have to limit our citation to Bank
et al [2] and Rockafellar and Wets [11]. The referee asked: Whether the
optimal value function in a general (not necessarily convex) QP problem is a
plq function w.r.t. its linear variables? It turns out that the plq property is
not available in the general case. By constructing an example we will give a
negative answer to the question.

EXAMPLE 4.1. Consider the problem

minimize fðx;cÞ¼ 1
2ðx

2
1þ2x1x2�x22Þþc1x1þc2x2;

subject to x¼ðx1;x2Þ2R2; 1
2x1þx2P0; x2�x1P0; �x2P�2; ð4:4Þ
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and denote by u1ðcÞ; c ¼ ðc1; c2Þ 2 R2 , the optimal value of this noncon-
vex QP problem.
We will compute the values u1ðcÞ; c 2 R2. Then it will be shown that

u1ðcÞ is not a plq function. From the result it follows immediately that the
optimal value function uðc; bÞ, c ¼ ðc1; c2Þ 2 R2 and b ¼ ðb1; b2; b3Þ 2 R3,
of the following parametric QP problem is not plq:

minimize fðx;cÞ¼ 1
2ðx

2
1þ2x1x2�x22Þþc1x1þc2x2

subject to x¼ðx1;x2Þ2R2; 1
2x1þx2Pb1; x2�x1Pb2; �x2Pb3: ð4:5Þ

Let �b ¼ ð0; 0;�2Þ. In order to write (4.4) in the form (1.1), we put

D ¼ 1 1
1 �1

� �
; A ¼

1
2 1
�1 1
0 �1

2

4

3

5; b ¼ �b ¼
0
0
�2

0

@

1

A; c ¼ c1
c2

� �
:

Note that the feasible domain DðA; �bÞ of (4.5) is a triangle with the verti-
ces ð0; 0Þ; ð2; 2Þ and ð�4; 2Þ. Since DðA; �bÞ is compact, uðc; �bÞ 2 R for every
c 2 R2. In other words, dom uð�; �bÞ ¼ R2. In agreement with (2.1) and
(2.2), the auxiliary problem corresponding to (4.4) is the following one

minimize 1
2ðc

Txþ bTkÞ ¼ 1
2ðc1x1 þ c2x2Þ � k3

subject to ðx; kÞ ¼ ðx1;x2; k1; k2; k3Þ 2 R2 � R3;

x1 þ x2 � 1
2k1 þ k2 þ c1 ¼ 0;

x1 � x2 � k1 � k2 þ k3 þ c2 ¼ 0; ð4:6Þ
1
2x1 þ x2P0; k1P0; k1 1

2x1 þ x2
	 


¼ 0;

x2 � x1P0; k2P0; k2ðx2 � x1Þ ¼ 0;

x2O2; k3P0; k3ð2� x2Þ ¼ 0:

We shall apply formula (2.10) to compute the values uðc; bÞ;
c 2 R2; b ¼ �b. To do so, we have to compute the optimal value uI

KKTðc; bÞ
defined by (2.9), where I � f1; 2; 3g is an arbitrary subset. For
I1 :¼ f1; 2; 3g, taking account of (4.6), we obtain

uI1
KKTðc; �bÞ ¼ 1

4ð�c
2
1 � 2c1c2 þ c22Þ;

dom uI1
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : �3c1 þ c2P0; ð4:7Þ

c2P0; �c1 þ c2O4g:
The exact meaning of (4.7) is the following: uI1

KKTðc; �bÞ ¼ 1
4 ð�c21 � 2c1c2 þ c22Þ

for every c belonging to the above defined set dom uI1
KKTð�; �bÞ and

dom uI1
KKTðc; �bÞ ¼ þ1
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for every c j2 dom uI1
KKTð�; �bÞ. A similar interpretation applies to the results

of the forthcoming cases. For I2 :¼ f1; 2g, we have

uI2
KKTðc; �bÞ ¼ �1

2c
2
1 � 2c1 þ 2c2 � 4;

dom uI2
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : 2� c1P0; ð4:8Þ

4þ c1P0; 4þ c1 � c2P0g:

For I3 :¼ f2; 3g, we have

uI3
KKTðc; �bÞ ¼ 2c21 þ 1

2c
2
2 � 2c1c2;

dom uI3
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : c2O3c1; ð4:9Þ

c2 � 2c1P0; c2 � 2c1O2g:

For I4 :¼ f1; 3g, we have

uI4
KKTðc; �bÞ ¼ �1

4ðc1 þ c2Þ2;
dom uI4

KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : c1 þ c2O0; ð4:10Þ
c1 þ c2P� 4; c2P0g:

For I5 :¼ f1g, we have

uI5
KKTðc; �bÞ ¼ 2c1 þ 2c2 þ 4;

dom uI4
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : c1 þ 4O0; c1 þ c2 þ 4O0g:

ð4:11Þ

For I6 :¼ f2g, we have

uI6
KKTðc; �bÞ ¼ �4c1 þ 2c2 � 2;

dom uI6
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : c1 � 2P0; ð4:12Þ

2þ 2c1 � c2P0g:

For I7 :¼ f3g, we have

uI7
KKTðc; �bÞ ¼ 0;

dom uI7
KKTð�; �bÞ ¼ fc ¼ ðc1; c2Þ 2 R2 : c1 þ c2P0; c2 � 2c1P0g: ð4:13Þ

For I8 :¼ ;, we have

uI8
KKTðc; �bÞ ¼ þ1 forevery c 2 R2;

dom uI8
KKTð�; �bÞ ¼ ;: ð4:14Þ

Consider the following polyhedral convex subsets of R2:
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X1 ¼ fc ¼ ðc1; c2Þ : c2O� c1 � 4; c1O� 4g;
X2 ¼ fc ¼ ðc1; c2Þ : c2P� c1 � 4; c2O� c1; c2Pc1 þ 4g;
X3 ¼ fc ¼ ðc1; c2Þ : c2P� c1; c2Pc1 þ 4; c2P2c1 þ 2g;
X4 ¼ fc ¼ ðc1; c2Þ : c2O2c1 þ 2; c2P2c1 þ 1; c1P2g;
X5 ¼ fc ¼ ðc1; c2Þ : c2O2c1 þ 1; c1P2g;
X6 ¼ fc ¼ ðc1; c2Þ : c1O2; c2O2c1; c2P0g;
X7 ¼ fc ¼ ðc1; c2Þ : c2O0; c1P� 4; c1O2g;

X8 ¼ fc ¼ ðc1; c2Þ : c2P0; c2O� c1; c2Oð
ffiffiffi
2
p
� 1Þðc1 þ 4Þg;

X9 ¼ fc ¼ ðc1; c2Þ : c2Pð
ffiffiffi
2
p
� 1Þðc1 þ 4Þ; c2O� c1; c2Oc1 þ 4g;

X10 ¼ fc ¼ ðc1; c2Þ : c2P� c1; c2Oc1 þ 4; c1O2; c2P2c1g:

Using formulae (2.10) and (4.7)–(4.14), we can show that

uðc; �bÞ ¼ uI5
KKTðc; �bÞ ¼ 2c1þ 2c2þ 4 for every c 2 X1;

uðc; �bÞ ¼ uI4
KKTðc; �bÞ ¼ �1

4ðc1þ c2Þ2 for every c 2 X2 [X9;

uðc; �bÞ ¼ uI7
KKTðc; �bÞ ¼ 0 for every c 2 X3 [X4;

uðc; �bÞ ¼ uI6
KKTðc; �bÞ ¼ �4c1þ 2c2� 2 for every c 2 X5;

uðc; �bÞ ¼ uI2
KKTðc; �bÞ ¼ �1

2c
2
1� 2c1þ 2c2� 4 for every c 2 X6 [X7 [X8:

We will pay a special attention to the behavior of uð�; �bÞ on the region
X10. Consider the parabola

C ¼ fðc1; c2Þ 2 R2 : c2 ¼ 1
4c

2
1 þ c1 þ 2g:

It can be verified that, for each c ¼ ðc1; c2Þ 2 X10,

uðc; �bÞ ¼ 0 if c2P 1
4 c

2
1 þ c1 þ 2,

� 1
2 c

2
1 � 2c1 þ 2c2 � 4 if c2O 1

4 c
2
1 þ c1 þ 2.

�
ð4:15Þ

Thus uðc; �bÞ ¼ uI7
KKTðc; �bÞ for all the points c 2 X10 lying above C, and

uðc; �bÞ ¼ uI2
KKTðc; �bÞ for all the points c 2 X10 lying below C.

PROPOSITION 4.1. The obtained optimal value function uðc; �bÞ ðc 2 R2Þ can-
not be a piecewise linear–quadratic function.

Proof. Suppose, contrary to our claim, that the function uð�; �bÞ is plq. Then
the set dom uð�; �bÞ ¼ R2 can be represented in the form

R2 ¼
[

j2J
Dj; ð4:16Þ
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where J is a finite index set and Dj ðj 2 JÞ are polyhedral convex sets.
Moreover, for every j 2 J, one has

uðc; �bÞ ¼ 1
2c

TQjcþ dTj cþ aj ð4:17Þ

for all c 2 Dj, where aj 2 R; dj 2 R2; Qj 2 R2�2
S . Let

D0j ¼ Dj \ X10 ðj 2 JÞ:

Note that some of the sets D0j can be empty. From (4.16) we deduce that

X10 ¼
[

j2J
D0j: ð4:18Þ

Note also that on each set D0j ðj 2 JÞ the function uð�; �bÞ has the linear-qua-
dratic representation (4.17). Define

XI
10 ¼ fc ¼ ðc1; c2Þ 2 X10 : c2P1

4c
2
1 þ c1 þ 2g;

XII
10 ¼ fc ¼ ðc1; c2Þ 2 X10 : c2O1

4c
2
1 þ c1 þ 2g:

It is evident that XI
10 is a convex set. Note that XI

10 and XII
10 are compact

sets which admit the curve C \ X10 as the common boundary. The set XI
10

(resp., XII
10) has nonempty interior. Indeed, let ĉ :¼ ð0; 3Þ and ~c :¼ ð0; 1Þ.

Substituting the coordinates of these vectors into the inequalities defining
XI

10 and XII
10, we see at once that ĉ 2 intXI

10 and ~c 2 intXII
10. Here and in

the sequel, int M denotes the interior of a set M.
Fix any index j 2 J for which D0j 6¼ ;. First consider the case int D0j 6¼ ;.

If

int D0j \ int XI
10 6¼ ; ð4:19Þ

then we must have D0j � XI
10. Indeed, by (4.19) there must exist a ball

B � R2 of positive radius such that B � D0j \ XI
10: By (4.15), uðc; �bÞ ¼ 0 for

every c 2 XI
10. Then, it follows from (4.17) that

uðc; �bÞ ¼ 1
2c

TQjcþ dTj cþ aj ¼ 0

for every c 2 B. This implies that Qj ¼ 0; dj ¼ 0 and aj ¼ 0. Consequently,

uðc; �bÞ ¼ 0 ð8c 2 D0jÞ: ð4:20Þ

We observe from (4.15) that uðc; �bÞ < 0 for every c 2 X10 n XI
10. Hence

(4.20) clearly forces D0j � XI
10. If intD0j \ intXI

10 ¼ ; then we must have
int D0j � XII

10. Since XII
10 is closed, we conclude that D0j � XII

10. Therefore, if
D0j \ XI

10 6¼ ; then D0j \ XI
10 ¼ D0j \ C. In this case, it is easy to show that

D0j \ C is a singleton.
Now consider the case int D0j ¼ ;. Since D0j is a compact polyhedral con-

vex set in R2, there are only two possibilities: i) D0j is a singleton, and ii) D0j
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is a line segment. In both situations, if D0j \ XI
10 is nonempty then it is a

compact polyhedral convex set (a point or a line segment).
From (4.18) and from the above discussion, we can conclude that XI

10 is
the union of the following finite collection of polyhedral convex sets:

D0j ð j 2 J is such that intD0j \ intXI
10 6¼ ;Þ;

D0j \ C ð j 2 J is such that int D0j 6¼ ;; intD0j \ intXI
10 ¼ ;Þ;

D0j \ XI
10 ð j 2 J is such that intD0j ¼ ;; D0j \ XI

10 6¼ ;Þ:

As XI
10 is convex, it coincides with the convex hull of the above-named

compact polyhedral convex sets. According to Rockafellar ([9], Theorem
19.1), this convex hull is a compact polyhedral convex set. So it has only a
finite number of extreme points (see [9], p. 162). Meanwhile, it is a simple
matter to show that every point from the infinite set C \ X10 is an extreme
point of XI

10. We have arrived at a contradiction. The proof is complete. (
In Section 3 we have established a result on directional differentiability

of the optimal value function uðc; bÞ of (1.1). Now we shall apply formula
(3.13) to compute directional derivative of the function uð�; �bÞ studied in
this section.
Let �c ¼ �cðlÞ ¼ ð0;lÞ; l 2 R. For �wðlÞ ¼ ð�cðlÞ; �bÞ and �z ¼ ð�u; �vÞ, where

�u ¼ ð1; 0Þ 2 R2 and �v ¼ ð0; 0; 0Þ 2 R3, we have u0ð�wðlÞ; �zÞ ¼ u01ð�cðlÞ; �uÞ.
Using formulae (3.13) and (4.7)–(4.14), we obtain

u0ð�wðlÞ; �zÞ ¼ u01ð�cðlÞ; �uÞ

¼

ðuI7
KKTÞ

0ð�cðlÞ; �uÞ for l > 2,

minfðuI7
KKTÞ

0ð�cðlÞ; �uÞ;
ðuI2

KKTÞ
0ð�cðlÞ; �uÞg for l ¼ 2,

ðuI2
KKTÞ

0ð�cðlÞ; �uÞ for l < 2.

8
>>>>><

>>>>>:

Therefore

u0ð�wðlÞ; �zÞ ¼ u01ð�cðlÞ; �uÞ ¼ 0 for l > 2,
�2 for lO2.

�

By Lemma 2.3, the function u1ð�Þ ¼ uð�; �bÞ is locally Lipschitz on R2.
From Theorems 3.1 and 3.2 it follows that u1ð�Þ is directionally differentia-
ble at every c 2 R2 and, for every u 2 R2, the directional derivative u1ðc; uÞ
is finite. One can expect that u1ð�Þ is regular in the sense of Clarke [6], i.e.,
for every c 2 R2 it holds u0

1ðc; uÞ ¼ u01ðc; uÞ, where

u0
1ðc; uÞ :¼ lim sup

c0!c; t#0

u1ðc0 þ tuÞ � u1ðc0Þ
t
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denotes the generalized directional derivative of u1 at c in direction u.
Unfortunately, the function u1ð�Þ is not Lipschitz regular. Indeed, for
�c ¼ ð0; 2Þ and �u ¼ ð0; 1Þ, using (4.15) it is not difficult to show that

0 ¼ u0
1ð�c; �uÞ > u01ð�c; �uÞ ¼ �2:

5. Concluding Remarks

In this paper we have studied a class of optimal value functions in parametric
(nonconvex) quadratic programming. It has been shown that these functions
are directionally differentiable at any point from their effective domains but,
in general, they are not piecewise linear–quadratic and they may be not Lips-
chitz regular at some interior points in their effective domains.
It would be desirable to find out what additional conditions one has to

impose on the pair of matrices ðD;AÞ 2 Rn�n
S � Rm�n, where D need not be

a positive semidefinite matrix, so that the optimal value function

ðc; bÞ7!uðD;A; c; bÞ

of the parametric problem (1.1) is piecewise linear–quadratic on Rn � Rm.
Both referees of this paper informed us that Klatte had constructed an

example of an optimal value function in a linearly perturbed QP problem
which is not plq. Being unaware of that (unpublished) example, we have
constructed Example 4.1. One referee gave us some hints in detail on the
example of Klatte. Namely, letting two components of the data perturba-
tion of a QP problem considered by Klatte [8] be fixed, one has the prob-
lem

minimize x1x2 subject to x ¼ ðx1; x2Þ 2 R2;

� 1Ox1Ob1; b2Ox2O1;

where b ¼ ðb1; b2Þ 2 R2, b1P0 and b2O0, represents the perturbation of
the feasible region. Denote by uðb1; b2Þ the optimal value function of this
problem. It is easy to verify that

uðb1; b2Þ ¼
�1 if �1Ob1b2,
b1b2 if �1 > b1b2.

�

If b1 < 0 or b2 > 0, then we put uðb1; b2Þ ¼ þ1. Arguments similar to
those of the proof of Proposition 4.1 show that uðb1; b2Þ is not a plq func-
tion. The main difference between this example and Example 4.1 is that
here the feasible region is perturbed, while in Example 4.1 the objective
function is perturbed. Note also that u1ðcÞ is a locally Lipschitz function
defined on the whole space R2.
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